Прибор улучшает биосовместимость и бактериальную резистивность медицинских изделий. Фото со страницы «Лазерный центр» в «ВКонтакте» |
Один из них – проект по созданию универсальных роботизированных лазерных комплексов для обработки медицинских имплантатов, реализованный учеными Института лазерных технологий Санкт-Петербургского национального исследовательского университета информационных технологий механики и оптики (ИТМО). Индустриальным партнером проекта выступила компания «Лазерный центр». А Центр трансфера технологий, созданный на базе ИТМО, по национальному проекту «Наука и университеты», содействует привлечению компаний-партнеров и оценке вариантов вывода разработки на рынок.
Имплантаты представляют собой обширную категорию медицинских изделий, которые используются для замены отсутствующих у человека органов или их частей. Существуют, например, дентальные имплантаты, помещаемые в челюстную кость в качестве опоры для зубного протеза, имплантаты для коленных суставов, костей черепа и др.
Поверхности имплантатов важно придать определенные свойства, чтобы изделие дольше функционировало, не вызвало отторжения и воспаления тканей: пескоструйная обработка делает имплантат биосовместимым, а травление кислотами и анодирование используются как антибактериальные процедуры. Эти операции производятся на разном оборудовании – комбинированная обработка достаточно сложная, поэтому сегодня практически не применяется. Как сообщают в ИТМО, разработка санкт-петербургских ученых позволяет обрабатывать имплантаты «под ключ» с применением одной технологической системы на лазерной основе.
Прибор запускает процессы попеременно. Так, для придания антибактериальных свойств имплантата лазер нагревает его поверхность до образования оксидной пленки, которая при последующем ультрафиолетовом облучении проявляет бактерицидные свойства. Для придания биосовместимых свойств лазер создает на поверхности имплантата такой рельеф, который позволяет клеткам «удобно» закрепляться и приживаться на нем.
Кроме того, в роботизированном комплексе реализована технология нанесения нетоксичных идентификационных знаков на поверхности изделий – это обязательная по закону маркировка, позволяющая отследить жизненный цикл продукта. С помощью комплекса можно обрабатывать как медицинские изделия, например скальпели и хирургические ножницы, так и имплантаты для разных частей тела – зубов, черепа, тазобедренного и коленного суставов.
Комплекс представляет собой шестиосевой робот-манипулятор с установленной на его руке лазерной сканирующей системой. Луч лазера можно сориентировать относительно поверхности имплантата по всем шести пространственным координатам, что позволяет обрабатывать изделия сложной формы в одном технологическом цикле. Программное обеспечение (ПО) для установки также разработали специалисты ИТМО. Для обработки имплантата достаточно загрузить в программу его 3D-модель и указать необходимые параметры. В ПО внедрена система компьютерного зрения, которая помогает оператору комплекса проще определить положение изделия в реальности.
«Те роботизированные решения, которые на сегодня внедрены в промышленности, заточены под обработку изделий, выпускаемых крупными сериями. Оператор задает комплексу программу в виде последовательности действий, заточенных под конкретные изделия, и затем установка многократно повторяет эти действия. Такой подход очень тяжело применять при производстве мелкосерийных или уникальных изделий, так как для каждого нового изделия требуется трудоемкая подготовка программы. А наша разработка позволяет быстро подготовить программу для нового изделия и сразу запустить его обработку», – отметил научный сотрудник Института лазерных технологий ИТМО Федор Иночкин.
А на химическом факультете Московского государственного университета им. М.В. Ломоносова разработали технологию изготовления модифицированного графита с улучшенными свойствами. Из этого материала изготавливают специальную фольгу с низким водопоглощением. Использовать ее можно, например, в энергетике и нефтегазовой промышленности: сферами применения могут быть сбор нефтяных отходов с водной поверхности и создание оборудования с особо прочной герметизацией.
Преимуществами фольги из улучшенного графита являются долгий срок службы и надежная герметичность при использовании в качестве уплотнителя. При этом природный графит является более экологичным материалом, чем распространенные высокотемпературные уплотнители на основе асбеста, которые эксплуатируются при высоких температурах – до 450 градусов.
При активном содействии Центра трансфера технологий МГУ им. М.В. Ломоносова, созданного по нацпроекту «Наука и университеты», заключил лицензионное соглашение на применение технологии с российским производителем композитных материалов – группой компаний «Унихимтек». Разработка московских ученых сможет импортозаместить зарубежные аналоги.