0
5169
Газета НГ-Энергия Интернет-версия

09.12.2008 00:00:00

Новое слово в реакторостроении

Тэги: ввэр, реактор, энергетика


ввэр, реактор, энергетика Модель высокотемпературного газоохлаждаемого реактора "Астра".
Фото Юрия Макарова

В 1946 году в Лаборатории № 2 АН СССР был пущен первый в Евразии реактор Ф-1. Его небольшой мощности (24 кВт) достаточно для исследовательских целей. Вполне естественно, что исследования, проводившиеся на реакторе Ф-1, во многом определили создание в нашей стране за небольшой срок атомной промышленности, развитие реакторной физики и техники, ядерной энергетики. В последние годы в РНЦ «Курчатовский институт» большое внимание уделяется развитию инновационных технологий ядерных реакторов.

Энергия ближайшей перспективы

По российским проектам в мире в настоящее время созданы 63 установки типа ВВЭР. Последние две электрической мощностью по 1000 МВт были введены в строй в Китае. В ближайшие годы ожидается ввод в эксплуатацию двух установок в Индии, началось сооружение блока в Болгарии. Не так давно наша страна выиграла тендер на строительство четырех реакторов в Турции и двух в Украине.

«В основном, на наш взгляд, по этому направлению в ближайшем будущем будет развиваться реакторная технология, – отмечает Юрий Семченков, директор Института ядерных реакторов (ИЯР) РНЦ «Курчатовский институт». – Перспективным реактором, проектирование которого заканчивается в 2009 году, станет форсированный реактор ВВЭР-1200 (АЭС-2006). Он создан на базе ВВЭР-1000 за счет увеличения активной зоны».

Интерес в ближайшей перспективе представляет развитие нового реактора по типу ВВЭР с большим коэффициентом воспроизводства. В настоящее время курчатовцы начали концептуальную проработку такого проекта. Условное название этого реактора – Супер-ВВЭР. По словам Семченкова, это реактор ближайшего будущего, поскольку он основан на технологии, хорошо отработанной как в России, так и во всем мире.

Революция в реакторных технологиях

Но если технология Супер-ВВЭР – это эволюционное развитие технологии действующих водо-водяных энергетических реакторов, предназначенных для производства электроэнергии, то высокотемпературные газоохлаждаемые реакторы (ВТГР) основаны на принципиально иных технологиях. Поэтому развитие концепций ВТГР подразумевает существенное продвижение в реакторных технологиях.

Всего сотни метров отделяют друг от друга расположенные на территории Курчатовского института первый реактор Ф-1 и работающую модель высокотемпературного газоохлаждаемого реактора – критический стенд «Астра», на котором проводятся исследования в обоснование нейтронно-физических характеристик реакторов типа ВТГР. Основа концепции критического стенда – использование сферических тепловыделяющих элементов, загружаемых в пространство, ограниченное графитовыми отражателями.

«В реакторах типа ВТГР для охлаждения активной зоны используется не водяной теплоноситель, как в ВВЭР, а высокотемпературный газ, – рассказывает Петр Фомиченко, начальник отдела высокопотенциальной энергетики ИЯР. – Основное принципиальное отличие и преимущество высокотемпературных технологий – возможность достижения необычайно высоких температур теплоносителя на выходе из реактора, гораздо больших, чем в ВВЭР, – до 1000 градусов! Добиться таких высоких температур можно, используя керамическое топливо и химически инертный гелий в качестве теплоносителя. На основе анализа мирового опыта и работ, проводившихся в России, в качестве топлива ВТГР была предложена концепция микротвэлов, состоящих из топливного сердечника малого диаметра (около 0,5 мм) с нанесенными на него высокопрочными и жаропрочными защитными слоями из пироуглерода и карбида кремния. На основе этих микротвэлов создаются шаровые тепловыделяющие элементы или топливные компакты, напоминающие короткие стерженьки».

Как отметил Фомиченко, такие высокие температуры можно использовать в различных технологических процессах. Если основное предназначение реакторов типа ВВЭР – все-таки производство электроэнергии, то высокотемпературные газовые реакторы открывают для атомной энергетики новое пространство. Реакторные системы с ВТГР, безусловно, обладающие возможностями более эффективно производить электроэнергию, призваны заметно расширить сферу использования атомной энергии и войти в те области энергопотребления, где атомная энергия пока не завоевала значимых позиций. Это прежде всего производство промышленного тепла для энергоемких технологий, например химических, металлургических, для производства моторного топлива, а также водорода. Именно этим сферам принадлежит большая часть потребления энергии.

«Задача внедрения высокотемпературных реакторных технологий – захватить эту новую для атомной энергетики часть рынка, предложив конкурентоспособные услуги по производству высокопотенциального тепла. Поэтому можно смело сказать, что высокотемпературное направление в реакторных технологиях, развиваемое в Курчатовском институте, способно сделать существенный вклад в расширение сферы использования ядерной энергии», – утверждает Фомиченко.

Эффект температуры

На рубеже столетий началась новая стадия работы над высокотемпературными реакторами. Используя опыт, накопленный за предыдущие годы, а также достижения в работах над новыми реакторными материалами, исследователи предлагают новые технические решения, улучшающие возможности реакторов этого типа. Сегодня это активно развивающееся направление известно в мире как часть программы «Генерация-4», инициированной США. В этой программе определены шесть типов различных реакторных концепций, и две из них используют гелий в качестве теплоносителя, в том числе и для производства высокопотенциального тепла.

Вокруг перспективного высокотемпературного направления уже сложилась устойчивая международная кооперация. Туда устремлены и научные интересы Курчатовского института. Это вполне естественно, если учесть, что исследования и разработки по созданию высокотемпературных источников атомной энергии начались в Институте атомной энергии им. И.В.Курчатова еще в 1960-е годы: это время зарождения энерготехнологического направления атомной энергетики. Тогда эти работы были сосредоточены в специально созданном отделе, их руководство поручили талантливым молодым ученым М.Д.Миллионщикову и Н.Н.Пономареву-Степному. Сейчас академик РАН Н.Н.Пономарев-Степной – научный руководитель высокотемпературного направления.

«В настоящее время мы в сотрудничестве с рядом российских организаций атомной отрасли работаем в рамках Программы демонстрации технологий высокотемпературных реакторов, – говорит Фомиченко. – Эта стадия работ над реакторными технологиями ВТГР посвящена решению наиболее проблемных вопросов. В свое время на основе экспертной оценки было определено, какие направления разработок являются самыми критическими и сложными. К ним относится, в частности, отработка высокотехнологичных процессов для массового производства топлива с керамическим покрытием. Есть и другие направления – например, физика активной зоны кольцевого типа, и именно теоретические наработки в этом направлении проверяются экспериментально на нашем стенде «Астра».

Атомно-водородное чудо

Высокие температуры нужны и для производства водорода. Сегодня многим известно, что водород может быть высокоэффективным и экологически чистым энергоносителем: он широко используется в промышленности и ракетной технике, а в будущем может найти применение в энергетике, бытовом теплоснабжении, на автотранспорте. Уже в 1970-е годы Курчатовский институт стал активно действующим центром атомно-водородной энергетики. Результаты исследований, выполненных академиком Пономаревым-Степным, позволили предложить новые подходы к выбору и совершенствованию реакторных материалов, расширить температурные и радиационные границы их использования. На базе этих исследований и началось развитие нового направления использования атомной энергии – атомно-водородная энергетика, основанная на высокотемпературных реакторах с гелиевым охлаждением для производства водорода и других энергоносителей. Выполненные исследования по высокотемпературным реакторам стали основой для разработки и создания целого ряда реакторных установок с уникальными параметрами, в том числе ядерных ракетных двигателей.

Стратегия по сценарию

Когда новые ядерно-энергетические технологии выйдут за пределы критических стендов и станут реальной частью нашей энергетики? И какой будет энергетика будущего? Системные исследования в этом направлении выполняет группа ученых ИЯР и ИнИнЭн РНЦ «Курчатовский институт». Сегодня в Институте ядерных реакторов создано сразу несколько моделей развития атомной энергетики в России.

«В качестве ориентиров развития атомной энергетики России на долгосрочную перспективу взяты установленные мощности АЭС: 90 ГВт к 2030 году и 170 ГВт к 2050 году. Эти масштабы атомной энергетики определяются внутренними потребностями России по наращиванию электрогенерации в прогнозных сценариях развития экономики страны, выполненных Минэкономразвития, – констатирует Павел Алексеев, директор отделения перспективных ядерно-энергетических систем ИЯР. – Для замкнутого топливного цикла мы рассчитали структуру атомной энергетики и масштаб увеличения установленных мощностей атомных станций. Она определена на основе многофакторного анализа. Эта структура обеспечивает преемственность в развитии реакторных технологий, эволюционное развитие новых направлений, минимизирует потребление природного урана, не требует излишнего форсирования в развитии предприятий по переработке ОЯТ, минимизирует объемы региональных и централизованных хранилищ ОЯТ. Для этого сценарного варианта предполагается развитие атомной энергетики на основе замкнутого топливного цикла с быстрыми реакторами с расширенным воспроизводством топлива (реакторы БР-S). Серийный ввод коммерческих быстрых реакторов в эксплуатацию по нашему сценарию начнется с 2025 года. К этому времени основные технические решения должны быть подтверждены на малой серии быстрых реакторов, вводимых в эксплуатацию с 2018 года».

Одновременно с развитием быстрого направления продолжатся модернизация и усовершенствование реакторов ВВЭР-S с таким ориентиром, чтобы к началу их серийного ввода начиная с 2020 года они обеспечивали расход природного урана на уровне 130 т природного урана/ГВт(э)*год. Такие параметры топливного цикла могут быть достигнуты повышением КПД, оптимизацией топливного цикла реактора, разработкой конструкций активной зоны, обеспечивающих более высокий коэффициент конверсии топлива.

С 2025 года параллельно начнется развитие высокотемпературного направления, которое способно существенно расширить сферы применения атомной энергетики. Оно ориентировано на развитие атомно-водородной энергетики, производства искусственного моторного топлива, использование высокопотенциального тепла в промышленности.

Насколько оправдается этот прогноз, покажет уже совсем недалекое будущее.


Комментарии для элемента не найдены.

Читайте также


Минюст прописывает адвокатуре свои стандарты

Минюст прописывает адвокатуре свои стандарты

Екатерина Трифонова

Бесплатной юрпомощью гражданам занимаются не только государственные бюро

0
447
Евросоюз подключает Украину к снарядной кооперации

Евросоюз подключает Украину к снарядной кооперации

Владимир Мухин

Предприятия в странах ЕС собираются удовлетворить спрос ВСУ в боеприпасах

0
743
Путин обещает искать преемника среди служителей Отечеству

Путин обещает искать преемника среди служителей Отечеству

Иван Родин

После инаугурации патриарх Кирилл пожелал президенту править до конца века

0
849
Местное самоуправление подгоняют под будущий закон

Местное самоуправление подгоняют под будущий закон

Дарья Гармоненко

Упразднение низового уровня власти никому не нравится, но продолжается

0
633

Другие новости