0
0
2179

Новые увеличенные версии модели нейросетей ruCLIP Сбера размещены в открытом доступе

15:04 19.01.2022


На портале GitHub выложена линейка моделей ruCLIP, позволяющая ранжировать изображения и подписи к ним на русском языке, а также оценивать семантическу близость изображений и текстов. Модели разработаны командами Sber AI и SberDevices в дополнение к ранее опубликованной модели ruCLIP Small.  «Экосистема Сбера является одним из лидеров в области ML-решений — уже сегодня мы предлагаем разработчикам, дата-сайентистам и представителям бизнеса всё больше инструментов и сервисов: от платформ для ML-разработки, как SberCloud ML Space, до законченных ML-решений, как SmartSpeech, - отмечает первый заместитель председателя правления Сбербанка Александр Ведяхин. - Также за последний год объединённые команды Sber AI и SberDevices выпустили ряд трансформерных моделей — ruGPT-3 & family, — среди которых и популярная text-to-image ruDALL-E. Модели занимают первые строчки рейтингов различных бенчмарков и, в отличие от большинства аналогичных решений, размещены в открытом доступе. Эксклюзивные промышленные модели доступны в DataHub SberCloud ML Space. Всё это позволяет решать бизнесу многие задачи для создания собственных прорывных продуктов на базе ML, ускорять time to market и снижать затраты на разработку».

Промышленные версии с наивысшим качеством и количеством параметров — ruCLIP Base exclusive и ruCLIP Large exclusive — доступны в хабе предобученных моделей, датасетов и контейнеров DataHub на платформе SberCloud ML Space.
Эти модели на ряде датасетов успешно обошли ансамбль оригинальной англоязычной модели CLIP и русско-английского переводчика. 

Успешное обучение ruCLIP и доступность моделей в open source позволит решать многие задачи компьютерного зрения в различных продуктах и сервисах в режиме zero-shot, то есть без необходимости дорогостоящего дообучения, сообщают разаботчики. В релизе шесть моделей ruCLIP, отличающиеся размером использованного патча (14×14, 16×16, 32×32) и размерами входных изображений (224×224, 336×336 и 384×384). Семантика названия моделей выглядит так:

-         ruclip-vit-base-patch16-224;

-         ruclip-vit-base-patch32-224;

-         ruclip-vit-base-patch32-384 — ruCLIP Base;

-         ruclip-vit-large-patch14-224 — ruCLIP Large;

-         ruclip-vit-large-patch14-336 — ruCLIP Large exclusive — доступна DataHub SberCloud ML Space only;

-         ruclip-vit-base-patch16-384 — ruCLIP Base exclusive — доступна в DataHub SberCloud ML Space only.

Посмотреть детальное сравнение всех шести новых обученных моделей можно в репозитории на GitHub.


Оставлять комментарии могут только авторизованные пользователи.

Вам необходимо Войти или Зарегистрироваться

комментарии(0)


Вы можете оставить комментарии.


Комментарии отключены - материал старше 3 дней

Новости


17:12 29.01.2026
Система власти Зеленского начинает рушиться — Die Welt
0
30
17:00 29.01.2026
ВСУ за сутки потеряли около 1 150 военных в зоне СВО
0
61
16:32 29.01.2026
Рамзан Кадыров вошел в делегацию РФ на переговорах с ОАЭ в Кремле
0
128
16:12 29.01.2026
Сухогруз сел на мель около порта Махачкалы, в трюм поступает вода
0
147
16:00 29.01.2026
ВС РФ освободили Белую Березу в Сумской области
0
175
15:32 29.01.2026
Глава ГРУ заявил, что российские переговорщики «всегда готовы»
0
234
15:12 29.01.2026
РФ передала Украине 1 000 тел погибших военных, Киев передал 38 — Мединский
0
245
15:03 29.01.2026
«Школа 21» от Сбера помогает получить востребованное образование в IT
0
248
15:00 29.01.2026
Европа поможет оперативно снизить зависимость Украины от разведданных США — FT
0
249
14:59 29.01.2026
Награждены лучшие ученые и исследовательские проекты Сбера
0
268

Возврат к списку